Vorgaben für den Entwurf einer abstrakten funktionalen Systemarchitektur für eine CO₂-freie Energieversorgung

Stand 8.4.2024

Die folgenden 9 Thesen bilden eine Ebene einer funktionalen Systemarchitektur. Sie dient dazu eine nachfolgende konkretere Schicht abzuleiten, was nach einigen weiteren Ableitungen zu einer konkreten verbindlichen Systemarchitektur führt.

- 1. Grüner Strom wird nur für die Erzeugung von mechanischer Arbeit¹ und Beleuchtung verwendet
- 2. Die dominanten Primärenergieträger für grünen Strom sind Wind, Sonnenstrahlung mit ähnlich großen Anteilen und Laufwasser
- 3. Die ca. ¾ des grünen Primärstroms, die nicht inhärent bedarfsgerecht sind, werden in Stromspeichern zwischengespeichert bzw. in grünen Wasserstoff umgeformt und in Gasspeichern gesammelt
- 4. Bestehende Fahrzeuge werden bis zum Ende der ökonomischen Lebenszeit benutzt und mit Kraftstoff mit so viel beigemischten e-fuels versorgt, wie es die CCU-Gewinnung² ermöglicht. Ausgemusterte Fahrzeuge werden je nach Nutzungsziel durch BEV bzw. FCEV ersetzt
- 5. Der Anteil des Bedarfsprofils von Endnutzern an Strom, der mit dem Bedarf an Wärme deckungsgleich verläuft³ wird durch KWK-Anlagen bereitgestellt
- 6. Regelenergie wird durch die Stromspeicher (siehe 3.) gedeckt. Falls nötig wenn der Bedarf an Strom noch nicht genug reduziert wurde - werden die Speicher durch importierten grünen Strom unterstützt
- 7. Weiterer (mehr als 3.) Bedarf an Wasserstoff zur Gewinnung von Wärme⁴ wird aus fossilem Erdgas/LNG CO₂-frei⁵ gewonnen und später aus grünem importiertem Wasserstoff gedeckt
- 8. Der durch Pyrolyse mitgewonnene Kohlenstoff wird zur Reduzierung des Bedarfs von Stahl und Beton verwendet⁶
- 9. Es wird so viel Biomasse CO₂-frei in Wasserstoff umgewandelt und genutzt, dass andere unvermeidliche CO₂-Emissionen⁷ kompensiert werden. Nur der Rest an Biomasse wird direkt energetisch⁸ verwendet

Bei strikter Berücksichtigung dieser Thesen steht eine alle Sektoren umfassende CO2-neutrale und nachhaltige Energieversorgung zur Verfügung

² bei Flugzeugen auch und später nur durch DAC

¹ also auch BEV

³ z.B. Wärmepumpen und Fernwärme

⁴ auch Wärme-Kraft-Maschinen, FCEV und endotherme Prozesse

⁵ z.B. mit Methanpyrolyse

⁶ z.B. CFK, Kohle Faser verstärkter Kunststoff als Baustoff

⁷ Restproduktion von Beton, Baumaschinen, Einsatzfahrzeuge und andere Restemissionen

⁸ z.B. als Brennstoff